https://www.avient.com/sites/default/files/2022-08/Avient Candidates Data Privacy Notice Final - English.pdf
Please note that any changes made to your profile may impact on your current application(s). We will respond to your request(s) as soon as reasonably practicable, but in any case, within the legally required period of time.
https://www.avient.com/sites/default/files/resources/PolyOne%25202018%2520Proxy%2520Statement.PDF
The following table compares cumulative total shareholder return (“TSR”) on our common shares against the cumulative total return of the S&P 500 Index and the S&P Mid Cap Chemicals Index over one-, three- and five-year periods ending 2017年12月31日, assuming in each case a fixed investment of $100 and reinvestment of all dividends. Over a three-year time period, our TSR performance was less than the S&P 500 Index and the S&P Mid Cap Chemicals Index, primarily due to weaker performance from our DSS segment, which we subsequently divested in July 2017. These investments ultimately paid off, as 1-year TSR performance for 2017 exceeded that of the S&P indices and our peers.
https://www.avient.com/sites/default/files/2021-01/eccoh-cpr-product-bulletin.pdf
Additional Criteria • Total heat release (MJ/m²) • pHRR (kW/m²) • Time of Ignition (s) • Smoke production • Acidity • Flaming droplets This example demonstrates the need to consider the complete cable design, as using XLPE for the insulation layer would not give the required Euroclass.
https://www.avient.com/sites/default/files/2021-11/polystrand-product-selection-guide_0.pdf
POLYSTRAND CONTINUOUS FIBER REINFORCED THERMOPLASTIC TAPES & LAMINATES ™ PRODUCT SELECTION GUIDE Material Min FinishedSlit Width Max Finished Slit Width Unidirectional Tape 2” (50.8 mm) 24” (610 mm) X-Ply™, 3-Ply, 4-Ply 2” (50.8 mm) 120” (3048 mm) SLITTING CAPABILITIES Max Unfinished Width Max Finished Slit Width Max Finished Roll Weight Max Roll Length (X-Ply™, Full Width) Up to 125" (3175 mm) Up to 120" (3048 mm) Up to 10,000 lbs (4500 kg) Up to 4,000 ft (1200 m) LAMINATION LINE CAPABILITIES Tape Width Resin Capabilities Fiber Inputs Max Tape Roll Weight Max Roll Length 25" (635 mm) Standard Width, Slit Capabilities PP, PE, PETG, aPET, PA6 Additional polymers in development E-Glass S-Glass, Aramid Up to 1,800 lbs (816 kg) Up to 12,000 ft (366 m) TAPE LINE CAPABILITIES Product Name Resin Fiber Content Areal Weight Nominal Thickness1 Flexural Modulus ASTM D790 Flexural Strength ASTM D790 Tensile Modulus ASTM D3039 Tensile Strength ASTM D3039 wt % lb/ft2 oz/yd2 gsm in mm ksi GPa ksi MPa ksi GPa ksi MPa 6337 PP 63 0.10 14.75 500 0.015 0.38 3570 24.6 58 402 4010 27.6 111 765 6531 65 0.05 7.40 251 0.006 0.15 4020 27.7 73 505 4900 33.8 140 965 6536 0.07 10.32 350 0.009 0.23 4050 27.9 72 494 4500 31.0 131 903 6538 0.14 19.77 670 0.019 0.48 3540 24.4 47 324 4260 29.4 100 689 7034B PP-Black 70 0.07 10.24 347 0.009 0.23 4400 30.3 83 569 5000 34.5 111 765 6020 PE 60 0.08 11.95 405 0.012 0.30 3600 24.8 54 372 3800 26.2 109 752 6621 66 0.10 13.97 474 0.012 0.30 4000 27.6 55 379 4720 32.5 126 869 68222 68 0.16 23.34 791 0.022 0.56 4060 28.0 55 379 4560 31.4 113 779 5843 PETG 58 0.08 11.85 402 0.008 0.20 3680 25.4 90 621 4400 30.3 137 945 5840B aPET-Black 58 0.09 13.00 441 0.009 0.23 4120 28.4 107 738 5080 35.0 150 1034 5860B PA6-Black 58 0.08 11.48 389 0.010 0.25 3620 25.0 104 717 3970 27.4 108 745 TYPICAL PROPERTIES - UNIDIRECTIONAL FIBERGLASS REINFORCED THERMOPLASTIC TAPE 1 Nominal thicknesses indicated are baseline values that may vary depending on material processing and other variables.
https://www.avient.com/sites/default/files/2022-06/Maxxam FR Injection Molding Processing Guide.pdf
Barrel Temperatures °F (°C) PP Mineral-Filled PP Glass-Filled PP HDPE LDPE Rear Zone 360–390(182–200) 400–420 (204–216) 415–435 (213–224) 400–420 (204–216) 370–390 (188–199) Center Zone 370–400(188–204) 410–430 (210–221) 425–445 (218–229) 410–430 (210–221) 380–400 (193–204) Front Zone 390–410(200–210) 420–440 (216–227) 435–455 (224–235) 420–440 (216–227) 390–410 (199–210) Nozzle 400–425(204–219) 415–435 (213–224) 430–450 (221–232) 430–450 (221–232) 400–425 (204–219) Melt Temperature 400–425(204–219) 415–435 (213–224) 430–450 (221–232) 430–450 (221–232) 400 - 425 (204–219) Mold Temperature °F (°C) 60–120 (16–49) Pack & Hold Pressure 50–75% of injection pressure Injection Velocity (in/s) 1.0–3.0 Back Pressure (psi) 50–100 Screw Speed (rpm) 30–100 Drying Parameters Hours @ °F (°C) Not typically required.
https://www.avient.com/sites/default/files/2020-09/stat-tech-tri-fold-processing-guide.pdf
Base Resin PC PC/PSU PES PEI PP ABS PEEK PA Barrel Temperatures* °F (°C) Rear Zone 530–560 (277–293) 550–575 (288–302) 660–700 (349–371) 675–725 (357–385) 390–420 (199–216) 425–460 (219–238) 680–730 (360–388) 430–500 (221–260) Center Zone 515–560 (269–288) 540–565 (282–296) 650–690 (343–366) 655–710 (352–377) 380–405 (193–207) 415–450 (213–232) 670–710 (354–377) 420–490 (216–254) Front Zone 510–525 (266–274) 530–555 (277–291) 640–680 (338–360) 655–700 (346–371) 370–395 (188–202) 405–440 (207–227) 650–690 (343–366) 410–480 (210–249) Nozzle 520–535 (271–280) 540–565 (282–296) 650–690 (343–366) 665–710 (352–377) 380–400 (193–204) 415–450 (213–232) 660–700 (349–371) 420–490 (216–254) Melt Temperature 525–560 (274–293) 530–580 (277–304) 650–700 (343–371) 660–730 (349–388) 375–395 (191–202) 410–460 (210–238) 650–730 (343–388) 420–500 (216–260) Mold Temperature 175–250 (80–121) 160–220 (71–104) 280–350 (138–177) 275–350 (135–177) 100–135 (38–57) 150–180 (66–82) 300–425 (149–219) 160–230 (71–110) Pack & Hold Pressure 50%–75% of Injection Pressure Injection Velocity in/s 0.5–2.0 Back Pressure psi 50 Screw Speed rpm 40–70 40–70 40–70 40–70 40–70 40–70 40–70 40–70** Drying Parameters °F (°C) 6 hrs @ 250 (121) 4 hrs @ 250 (121) 4 hrs @ 275 (135) 4 hrs @ 250 (121) 3 hrs @ 300 (150) 2 hrs @ 200 (93) 3 hrs @ 275 (135) 4 hrs @ 180 (82) Cushion in 0.125–0.250 Screw Compression Ratio 2.0:1–2.5:1 2.0:1–2.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 2.5:1–3.5:1 Nozzle Type General Purpose General Purpose General Purpose General Purpose General Purpose General Purpose General Purpose Reverse Taper Clamp Pressure 5–6 Tons/in2 * A reverse temperature profile is important to obtain optimum conductive properties.
https://www.avient.com/sites/default/files/2020-08/eccoh-cpr-product-bulletin.pdf
Additional Criteria • Total heat release (MJ/m²) • pHRR (kW/m²) • Time of Ignition (s) • Smoke production • Acidity • Flaming droplets This example demonstrates the need to consider the complete cable design, as using XLPE for the insulation layer would not give the required Euroclass.
https://www.avient.com/sites/default/files/2023-10/31307-Certificate-20SEP2023.pdf
Industrial Valle del Cinca S/N Apartado Barbastro, Huesca E-22300 Spain Activity: Design and Manufacture of Specialty Engineered Thermoplastics Activity: Design and Manufacture of Specialty Engineered Thermoplastics Facility: Avient Corporation - Oricain (Pamplona), Spain Pol.
https://www.avient.com/sites/default/files/resources/PolyOne%2520Proxy%2520Statement%25202016.pdf
The following chart compares cumulative TSR on our common shares against the cumulative total return of the S&P 500 Index and the S&P Mid Cap Chemicals Index for the five-year period 2010年12月31日 to 2015年12月31日, assuming in each case a fixed investment of $100 and reinvestment of all dividends. Our performance has exceeded the S&P 500 Index as well as the S&P Mid Cap Chemicals Index. The $1 million deduction limit generally does not apply to compensation that satisfies Section 162(m)’s requirements for qualified performance-based compensation.
https://www.avient.com/sites/default/files/2020-10/2020-gravi-tech-design-guide-.pdf
CHAPTER 3 | PART DESIGN GUIDELINES Wall Thickness (mm) C o o li n g T im e ( S e c ) 40 35 30 25 20 15 10 5 0 0 1 2 3 4 ABS PC Nylon 6/6 Figure 2 - Designing for Wall Thickness Changes Bad Better Recommended Recommended Poor High Stress Ideal Figure 3 - Internal and External Radius Guidelines .5W Min Inside Rad + W Poor High Volume FIGURE 1 - Wall thickness vs . cooling time of various plastics FIGURE 2 - Designing for wall thickness changes FIGURE 3 - Internal and external radius guidelines Design Guide 9 RIB DESIGN GUIDELINES The minimum distance ribs should be spaced is three times the nominal wall thickness (3W) . This will FIGURE 43 - Non-Newtonian Fluid Flow Low Level of Orientation Frozen Layer Highly Oriented Laminates Gate Pressure Transducer A Pressure Transducer B Hydraulic x 10 Filling Hold Start of mold shrinkage Time Pack P re s s u re A B FIGURE 45 - Non-Newtonian fluid flow Relative Viscosity = Transfer Position * Fill Time Shear Rate = 1 Fill time FIGURE 46 - Pressure vs . End of Fill Part Length Dynamic Pressure Hydrostatic Pressure P re s s u re Gate End Part FIGURE 61 - Deflection Equations H F WLMax Deflection: 0.002" (0.05mm) 1 = W • H3 12 _______ bending = F • L3 48 • E • I _______ 4 π tc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tccooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2coolant5 10π • ∆Pline 4 π tc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tccooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2coolant5 10π • ∆Pline 4 π tc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tccooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2coolant5 10π • ∆Pline FIGURE 60 - Pressure vs Part Length FIGURE 61 - Deflection equations FIGURE 62 - For Plate Shaped Parts FIGURE 63 - For Cylindrical Shaped Parts Design Guide 49 • M Moldings = Combined mass of molded parts • C p = Specific Heat of the material Step 3 – Heat Removal Rate • N lines = The total number of independent cooling lines there are in the mold • t c = The cooling time required by the part (Determined in step 1) Step 4 – Coolant Volumetric Flow Rate • ΔT Max,Coolant = Change in coolant Temperature During Molding (1°C) • ρ Coolant = Density of coolant • CP = Specific heat of coolant Step 5 – Determine Cooling Line Diameter • ρ Coolant = Density of coolant • V Coolant = Volumetric flow rate of coolant • μ Coolant = Viscosity of coolant • ΔP line = Max pressure drop per line (Usually equals half of the pump capacity) • L Line = Length of the cooling lines COOLING LINE SPACING 4 π tc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tccooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2coolant5 10π • ∆Pline 4 π tc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tccooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2coolant5 10π • ∆Pline 4 π tc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tccooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2coolant5 10π • ∆Pline 4 π tc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tccooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2coolant5 10π • ∆Pline 4 π tc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tccooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2coolant5 10π • ∆Pline 4 π tc = h2 1n π2 • a • Tmelt – Tcoolant Teject – Tcoolant tc = D2 1.61n 23.1 • a Tmelt – Tcoolant Teject – Tcoolant a = k p * Cp Qmoldings = mmoldings • Cp • Tme • Cplt – Teject cooling nlines moldings tccooling Vcoolant line nmax, coolant • Pcoolant • Cp, coolant Dmax = 4 • Pcoolant • Vcoolant π • µcoolant • 4000 Dmin = Pcoolant • Lline • V2coolant5 10π • ∆Pline 2D < H line < 5D H line < W line < 2H line FIGURE 70 - Cooling Line Spacing FIGURE 64 - Heat Transfer Equation FIGURE 65 - Total Cooling for Mold FIGURE 66 - Cooling Required by Each Line FIGURE 68 - Max Diameter Equation FIGURE 69 - Min Diameter Equation FIGURE 67 - Volumetric Flow Rate Equation 50 Gravi-Tech ADHESIVE ADVANTAGES DISADVANTAGES Cyanoacrylate Rapid, one-part process Various viscosities Can be paired with primers for polyolefins Poor strength Low stress crack resistance Low chemical resistance Epoxy High strength Compatible with various substrates Tough Requires mixing Long cure time Limited pot life Exothermic Hot Melt Solvent-free High adhesion Different chemistries for different substrates High temp dispensing Poor high temp performance Poor metal adhesion Light Curing Acrylic Quick curing One component Good environmental resistance Oxygen sensitive Light source required Limited curing configurations Polyurethane High cohesive strength Impact and abrasion resistance Poor high heat performance Requires mixing Silicone Room temp curing Good adhesion Flexible Performs well in high temps Low cohesive strength Limited curing depth Solvent sensitive No-Mix Acrylic Good peel strength Fast cure Adhesion to variety of substrates Strong odor Exothermic Limited cure depth Design Guide 51 Bibliography 1 .